If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7x+10.8=0
a = 1; b = 7; c = +10.8;
Δ = b2-4ac
Δ = 72-4·1·10.8
Δ = 5.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{5.8}}{2*1}=\frac{-7-\sqrt{5.8}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{5.8}}{2*1}=\frac{-7+\sqrt{5.8}}{2} $
| 3x+x=1.10 | | -6(-3k+5)=-138 | | -8(3x+14)=32 | | k+3/3=k-2/3 | | -b/5=-7 | | x/4-10=-6. | | 2a+19=5(-a+1) | | 8=-x+3* | | 140+8w=84+12w | | 6(5k+4)=30k+30 | | -7(-6+2b)-2b=90 | | x^2+7x+12=1.2 | | -7(6+2b)-2b=90 | | 300n=5,400 | | 16m-3=14m+5 | | -9=-5x+1* | | 6r-42=3(2r-14) | | 5+h=-11 | | x-41=59+9x | | 7(v-8)=-12 | | {m}{6}={4}{5} | | 6x+-3=40 | | 2(2x-3)=11x | | 4+5x=4-12(x+6) | | 9x-42+x=98 | | -16-4p=-39p | | 305=7(1+6k)+4 | | 3(x-1)=15-x | | 22=−3x−8 | | 6(x+5)=3(x+14) | | -(1-8n)=-15-6n | | 2x+9x-7x=5+3 |